APT31: Pakdoor

TECHNICAL REPORT

TLP:WHITE

Version: 2.1
Registration date: 2021-12-15
Number of pages: 16

TLP:WHITE

Contents

Introduction 3
Compromission vector 4
Launcher 5
Backdoor 6
4.1 Configuration e e e e e e e e e 6
4.2 Communicationttt e e e e e e e e e e e e 7
4.2.1 Initialization e 7
4.2.2 Peersmanagementot e e 7
4.2.3 Asynchronouseventhandlers 7
424 Messagesstructureo e e e e 8

4.3 Tasks e e 9
4.3.1 Peerdiscovery e e e 9
432 Trafficrelay e 10
4.3.3 Administration e e e e e e e 13
Conclusion 14
Hashes 15
Al Backdoor e 15
2/16

TLP:WHITE

T Introduction

In early 2021, several reports indicated that APT31 was compromising SOHO (Small Office
Home Office) routers, especially some manufactured by Pakedge!, to build its Command &
Control (C&C) infrastructure. More recently, it was observed that routers of other brands like
Cyberoam and Cisco were also compromised by APT31.

In order to remotely manage compromised routers and to make them communicate with
each other, the attacker installs a sophisticated backdoor on them. As the latter seemed to be
unknown publicly, we internally named it Pakdoor. The main purpose of this implant is to
provide a dedicated anonymization service to APT31.

Observations have shown that APT31 uses this infrastructure both for recon and for com-
munication with compromised targets, and thus data exfiltration. Moreover, compromised
routers are divided in different pools where a router belonging to one pool can only commu-
nicate with routers in the same pool.

This document attempts to detail the inner workings of Pakdoor and its different com-
ponents, and thus, to give a closer look at one of the C&C infrastructures of APT31. Also,
indicators of compromission are available at the end of this report.

https://www.pakedge.net

3/16

TLP:WHITE

https://www.pakedge.net

TLP:WHITE

2 Gompromission vector

When a router is compromised, the attackers drop at least three files on the filesystem:

e an ELF executable (written in C language) that implements most of the features of Pak-
door, hereinafter referred as the backdoor;

* a bash script responsible for continuously executing the backdoor and providing extra
features to the latter, hereinafter referred as the launcher;

* an encrypted configuration file containing the different peers which the implant can
communicate with.

4/16

TLP:WHITE

TLP:WHITE

3 Launcher

This script is executed by the /etc/rc.local script, which can execute commands after sys-
tem services are loaded at startup.

The purpose of this script is to ensure the persistence of the backdoor, but also to provide
some extra features (see Table 1) to the latter, such as the capacity to open ports in the local
firewall (Netfilter in this case). Moreover, two certificates and one private key are hardcoded
in the script. Both are used by the backdoor to setup TLS sockets (see Section 4.2 for more

details).

The script takes the name of the command to execute as a command-line argument (six
are implemented) and one more parameter if the command requires it.

Also, two paths are hardcoded at the beginning of the script in the following variables:

» file_name, path to the backdoor binary;

* port_file, path to a text file containing the port numbers used by the backdoor to relay

traffic.

The Table 1 sums up the purpose of each command implemented in the script.

Command

Description

add

Adds an iptables rule to allow network traffic to the port number given as
second parameter.

del

Deletes the iptables rule allowing network traffic to the port number given
as second parameter. If the latter is not specified, all the rules corresponding
to the ports present in the port file are deleted.

wl

Executes the add command for each port present in the port file every 20 sec-
onds.

port

If the port given as parameter is not present in the port file, it executes the
add command with the port as parameter and adds it to the port file.

ost

Cleans the port file (del command), executes the backdoor and the w1l com-
mand, waits for the execution of the backdoor to finish, removes the current
directory if the port file does not exist, kills the script instance that was exe-
cuting the wl command, sleeps five seconds and terminates the script execu-
tion if the backdoor does not exist anymore.

st

Executes the ost command. It seems to be the entry point of the script as this
is the command called in /etc/rc.local.

Table 1: Commands implemented by the launcher script

9/16

TLP:WHITE

4 Backdoor

The backdoor takes one command line argument that corresponds to a port number (see
Section 4.2 for its usage).

4.1 Configuration

The backdoor configuration is read and decrypted from the conf file (present in the same
directory as the backdoor). Depending on the version of the backdoor, the configuration is
either encrypted with ChaCha20 (2019 version) or with ChaCha20-Poly1305 (2021 version).
The encryption key is hardcoded in the implant.

The encrypted configuration matches the structure detailed in Figure 1. Obviously, the
tag field is only present if the encryption algorithm is ChaCha20-Poly1305.

PakdoorEncConf

pos size type id

0 12 nonce /

12 \ 2 uZbe | payload_size

14 |payload_size payload
16 tag

Figure 1: Structure of the encrypted configuration

The payload size is present in the encrypted configuration but it is also hardcoded in
the backdoor. In all the analysed samples, the hardcoded size is equal to 372 bytes and not
checked against the size present in the configuration file.

The decrypted configuration contains mainly pairs of IP address and port to which the
backdoor can establish a TLS socket. One implant cannot have more than ten peers at a given
time.

6/16

TLP:WHITE

TLP:WHITE
4.2 Communication

Communication between nodes (compromised routers) is done through TLS sockets where
each side needs to authenticate with a valid certificate signed by a certificate authority created
by APT31. Each node opens one TLS listening socket to receive sent or forwarded tasks from
other nodes.

421 Initialization

At the beginning of its execution, the implant parses the launcher script to retrieve the cer-
tificates and the private key. More precisely, there is a certificate for the certificate authority
(CA) and another one (from here on referred to as node certificate) used either to authenti-
cate the node as a server or as a client. The node certificate is signed by the CA certificate and
the private key is the one of the node certificate. From what was observed, there is one cer-
tificate authority by pool of compromised routers to ensure the segmentation between pools.
The latter are identified by the common name of the issuer field in the certificates.

These certificates are used by the backdoor to create a listening TLS socket on the port
given as command line argument.

4.2.2 Peers management

As the implant can communicate with several peers concurrently, it implements its own hash
table to manage active peers. Note that the same hash table is also used for traffic relay man-
agement (see Section 4.3.2 for more details). The key of a slot in the table is generated from
the public key of the peer and the hash algorithm used to compute the index is a slight variant
of the djb2? algorithm.

As collisions can occur (a same slot in the table for two different public keys), each slot is
a linked list where a node of the list is a fixed-size structure of 482 bytes that contains several
details on a given peer, including its IP address, listening port, public key and the last POSIX
time at which it was active.

4.2.3 Asynchronous event handlers

The backdoor makes heavy use of the 1ibev library to handle I/0 on the communication sock-
ets. The man page of libev® is very complete, however the structures ev_io and ev_timer
deserve special attention as they are regularly used in the code.

The ev_io structure is used to register a callback if one or several events occur on a given
file descriptor. For example, one can create a watcher on a network socket for the EV_READ
event, thus if the socket becomes readable, the callback defined in the watcher will be called.
As its name suggests, the ev_timer structure works in the same way, but instead of waiting
for a particular event, the callback is called after the amount of time defined in the watcher
has elapsed. Also, a timer watcher can be repeated for a specific number of times once the
callback has been executed.

Zhttp://www.cse.yorku.ca/ oz/hash.html

Shttps://linux.die.net/man/3/ev
TLP:WHITE

1/16

http://www.cse.yorku.ca/~oz/hash.html
https://linux.die.net/man/3/ev

TLP:WHITE

Figure 2 shows how the backdoor uses ev_io watchers to register callbacks that read from
(f_read_from_tls_socket_callback())orwriteto (f_write_to_tls_socket_callback())the
TLS listening socket.

// Register write watcher on socket.
->fd = £
->watcher list.watcher.pending = 0;
->watcher_list.watcher.active = 0;
->watcher_ list.watcher.ev_cb declare = (int)f_write_to_tls_socket_callback;
->watcher_list.watcher.priority = 0;
->events = EV__ IOFDSET|EV_WRITE;
ev_io_start (. i

// Register read watcher on socket.
= ->p_read_watcher;
-»>watcher_list.watcher.ev_cb_declare = (int)f_read_from_ tls_socket_callback;
->fd = i
->avents = EV__ IOFDSET|EV_READ;
-»>watcher list.watcher.pending = 0;
->watcher_list.watcher.active = 0;
-»watcher list.watcher.priority =
ev_io_start (. i} E

0;

Figure 2: IDA decompiler view of watchers used to handle I/0 on listening socket

424 Messages structure

Messages exchanged over TLS sockets respect a specific structure described in Figure 3.

PakdoorMessage

posf size [type ?

0 4 udbe [data_size
4 1q 1 ul | task_id
5 |data_size data

Figure 3: Structure of messages exchanged between peers

Communication between nodes always starts with a 5-bytes long message that contains
the identifier of the task to be executed by the peer as well as the size of additional data if
required. The latter is sent to the peer immediately after the message.

8/16

TLP:WHITE

4.3 Tasks

The backdoor can handle different tasks to discover and manage its peers, relay operators
traffic, and for administration purposes.

4.3.1 Peer discovery

Before being able to handle any other task, the backdoor initiates a communication with the
first valid peer in the configuration file. This discovery process has two purposes:

* being acknowledged as a valid peer by the peer in the configuration;

* retrieving the active peers of the latter.

As the backdoor only accepts tasks from peers present in the active
peers list, this process is critical for the backdoor to work properly.

Figure 4 illustrates a successful discovery process between two nodes.

Node 1

1) Get peer from configuration (execute task 0)

Ask for acknowledgement and request active peers
(send task 1)

Acknowledge and share active peers (send task 3)

Figure 4: Successful peer discovery process

When the node 2 (see Figure 4) executes the task #1, it does several checks before inserting
the node 1 to its active peers list.

1. The public key checksum in the node 1 information (sent along with task #1) has to
match the actual checksum of the public key. If they do not match, the node 1 is simply
ignored.

2. Thelast active time in the node 1 informations must not exceed three hours. Otherwise,
the node 2 sends the task #2 to the node 1 to ensure it is still alive. The latter would then
reply with the task #4 to acknowledge and terminate the discovery process. However,

TLP:WHITE

9/16

TLP:WHITE

in that specific case, the node 2 acknowledges the node 1 as a valid peer but it does not
share its active peers.

3. The active peers list should not contain more than ten peers (see Figure 5). If it is not
true, then the node 2 (see Figure 5) sends the task #2 to the first peer in its list (node 3)
to check if it is still alive. If the latter replies with the task #4, then the node 1 is ignored,
otherwise it is inserted in the list. In both cases, the node 2 sends its active peers to the

node 1.
1
oY
Node 1 Node 2 Node 3

1) Get peer from configuration (execute task 0)

Ask for acknowledgement and request active peers
(send task 1)

Check if peer is still alive (send task 2)
@ Indicate the node is still alive (send task 4)

@ Share active peers (send task 3)

Figure 5: Peer discovery process where a node has already too many peers

For cases 2 and 3, the backdoor reads the next peer in the configuration and repeats the
process until it has ten active peers.

4.3.2 Traffic relay

The main feature of the backdoor is to provide the capability to relay traffic from a node to
another. The operators can define any traffic chain as long as any two consecutive nodes in
the chain have acknowledged each other.

A traffic relay chain is composed of two types of nodes:

* one or several middle relays that forward traffic transparently;

* asingle exit relay that encrypts or decrypts traffic with a session key, and forwards it.

The number of nodes in the relay chain may vary from one node (a single exit relay) to
four nodes (three middle relays and one exit relay).

TLP:WHITE

10/16

TLP:WHITE

The traffic relay session lifecycle can be split into three distinct phases. Each one respec-
tively corresponds to the colors red, blue and black on Figure 6.

1. To create a traffic relay session, the operators send the task #5 to the first middle node.
Then, the latter sends the task #5 to the next node and so on until the exit node. Addi-
tional data for the task #5 contains the configurations of the relays (the corresponding
structures are detailed in the next sections). Each one of them is encrypted with the
public key of the recipient node. The task #5 consists in creating UDP sockets (on ports
arbitrarily chosen by the operating system) to manage the relay session. The backdoor
replies with task #6 to indicate the sockets have been created.

2. The operators initiate the relay session by sending a specific message on the listening
UDP socket of the first middle relay. The latter forwards the message to the next relay
and so on. The port command of the launcher script is used to open the port on the
local firewall. Once the initialization process is over, the exit relay replies with another
relay message to indicate it is ready to relay traffic.

3. The operators send encrypted traffic to the first middle relay. Depending on the version
of the backdoor, traffic is either encrypted with the ChaCha20 algorithm (2019 version)
or with the ChaCha20-Poly1305 variant (2021 version). The session key is only present
in the configuration of the exit relay.

Before starting a relay session, the backdoor forks itself so the parent process can continue
to process other tasks. The PID of the child process is stored into the hash table used for the
active peers list. The corresponding slot key is the listening port of the UDP socket used to
manage the relay session. Because of this parallelization, a given node of the infrastructure
can be used for several relay sessions at the same time, both as a middle and exit relay for
example.

11/16

TLP:WHITE

uolIssas AejaJ ajeuiwaa | @ 9 ¥sel @

J1y4ed1 pardAldag @ pa1e3.12 SeM UOISS3S ABjad 98pa|moudy @ uOI11BINSIJUOI IPOU 1IX3 YIM G ¥Se] @
(A23 uoissas yum pz-eyoeyd) aueay paidAioug @ uolssas Aejad aleilu| @ suol3edns1uod SIPoU Y3M G yse] @

TLP:WHITE

@

()
= (e) E

() < _._W @ > < _w @ >
- 9, > (siow 1o T)

LWIIIA apou 1Ix3
P p 2POU3PPIN >

siojeladQ

5 .
-O— —go—
o o

QIO

Figure 6: Overview of the lifetime of a traffic relay session

12716

TLP:WHITE

TLP:WHITE

4.3.3 Administration

The operators can manage the different nodes of the infrastructure using tasks #7 and #8. The
former implements standard backdoor commands such as:

e read or write a file;
¢ execute a shell command;

 get the current configuration.

To ensure the integrity of the payload contents, the CRC-64 checksum of the latter is checked
before processing the command. Moreover, the checksum is signed with the private key of
the certificate authority (see Figure 7), thus, even if one control a node of the infrastructure,
it cannot send commands to another node without knowing the operators private key.

// Verify checksum signature.
if (mbedtls_pk_ verify(

& =>p_main->p_cert_chain->p_ca_cert->pk,
0.!
->payload_checksum,
15,
->checksum_sig,
258))

{
return -1;

}
f_inverse_data_endianess ()
// Verify checksum.
= f compute_crcé6d4_checksum(—>payload, ->payload_size);
if (memecmp (—->payload_checksum, & , 8))
return -1;

Figure 7: IDA decompiler view of the verification of the payload checksum signature

13/16

TLP:WHITE

TLP:WHITE

hConclusion

Here are some key points about the analysis detailed in this report.

 This implant is used since at least 2019 (according to the submission date of one of the
samples to VirusTotal) by APT31.

e Its purposeis to build a peer-to-peer C&C infrastructure where each peer has to authen-
ticate with a TLS certificate to communicate with another peer.

* Most of the infrastructure lifecycle is automated using scheduled tasks, whether it is
for peer discovery or to ensure peers are still alive (if not the backdoor automatically
removes itself).

* The operators use the resulting infrastructure to build anonymous proxy chains that
support TCP, UDP and raw communications with the victim. Besides, process forking
allows the backdoor to run several proxy chains in parallel.

* The implementation of standard backdoor commands (read or write files and execute
shell command lines) provides an easy way for the operators to manage compromised
routers. Besides, the checksum of the command payload is signed with the operators
private key to ensure the authenticity of administration commands.

14716

TLP:WHITE

TLP:WHITE

A Hashes
A1 Backdoor

MD3a 77c73b8b1846652307862dd66ec09ebf
SHA1 cadf644815£758b78774c1285245e9be13b098fe
SHA256 1d60edb577641ced7dc2a8299f8b7£878e37120b192655aaf80d1cdebeed82d2

Size in bytes | 509952
Comment Available on VirusTotal

15/16

TLP:WHITE

7!
Ej]

Liberté + Egalité + Fraternité

REPUBLIQUE FRANGAISE

Premier ministre

AGENCE NATIONALE DE LA SECURITE DES SYSTEMES D'INFORMATION

ANSSI - 51, boulevard de la Tour-Maubourg - 75700 PARIS 07 SP
WWW.SSi.gouv.fr

HMSGDSNE

	Introduction
	Compromission vector
	Launcher
	Backdoor
	Configuration
	Communication
	Initialization
	Peers management
	Asynchronous event handlers
	Messages structure

	Tasks
	Peer discovery
	Traffic relay
	Administration

	Conclusion
	Hashes
	Backdoor

